Focus on innovation

A solid background in systems engineering and experience in design for manufacturing enables Lens R&D to come with solutions which will allow you to manufacture your products cost effectively while meeting performance targets. Background knowledge is mainly focused on electro optical sensors for space and military applications.

BiSon 64

The Bison 64 is a fine sunsensor and the first product produced by Lens R&D The sensors field of view is more then 60 degrees in diagonal ( 56 on axis) allowing full sperical coverage with only 6 sensors. A combination of specially designed housing with integrated wirebondable connector and semi-automated assembly allows for an unprecedented price performance ratio.

ESA Space business Incubation Centre ESIC

Lens R&D is participating in the ESA Business Incubation Program ESA-BIC The subject is to design high accuracy sunsensors for terrestrial applications like solar concentrator panels.

BiSon 6 sunsenor for solar concentrator applications

Space quality for a down to earth price

design, manufacturing and test of high performance electronics

Design of high performance electronics for innovative products like integrated photonics fibre bragg interrogators


BiSon74-ET-RH Engineering models received.

Designed in frame of the Artes 5.2 program ITAR free extended temperature fine sunsensor and intended to be the first small fine sunsensor to be capable of surviving the temperature excursions and radiation exposure experienced when mounted on extendable solar panels of geostationary telecom satellites, The BiSon74-ET-RH is intended to be a unique sensor, providing a cost effective and highly reliable solution to some issues already known for years.

BiSon74-ET-RH Engineering model

BiSon74-ET-RH Engineering model

In stowed configuration, solar panels quite often obscure the field of view of sunsensors thus hampering effective attitude acquisition during the Launch and Early Orbit Phase (LEOP) of many missions. Mounting a sunsensor on the solar panel until now was not feasible because no generally available sunsensor could handle the temperature ranges associated with this application. In Safe mode operation, the reliability of the solution is of utmost importance, and adding a sunsensor to the solar panel is the most direct and reliable way to measure the orientation of the solar panel. This is why Lens R&D (with support of ESA) is developing and qualifying an extended temperature sunsensor who’s temperature range allows for application at even the most demanding positions on a satellite, be it thin mechanical brackets or solar panels.

Today (23th of November 2016) we received 12 EM units produced in two different configurations for which 2*3 will be submitted to a compact but highly stressing qualification program.

The units have received their standard factory tests (10 thermal shocks from -55C to +125C according to MIL-STD-883 Method 1010B and PIND testing according to MIL-STD-883 Method 2020A which constitutes 3 periods of 20g sine and 12*1000g shocks) without any failure and are currently being calibrated.

The with ESA agreed upon test program consists of:

  1. calibration
  2. 12 thermal vacuum cycles -125C..+125C to demonstrate the capability to survive on ground testing
  3. calibration
  4. 30g sine and 38.9g random testing in all 3 axis to show launch load compatibility
  5. calibration
  6. 3500g pyroshock testing in all three axis (3 shocks per axis) to show the ability to withstand the expected separation shock
  7. calibration.

This test program is expected to be sufficient to convince potential customers we can survive on ground testing and launch.

The tests needed to show the resistance to a large number of wide range thermal cycles is still under discussion as this depends on the actual mission type targeted.

The current mission profile targeted is a long duration (20 years) geostationary profile where the satellite will go into a long eclipses (causing low temperatures) for only a couple of days per year.

More recent telecom missions however seem to focus on 1100 to 1300km altitudes with high radiation loading, many thermal cycles but not such low temperatures.

How to handle this will be decided at a later stage when the above testprogram has been completed successfully.

Completion of the current test program is expected by the end of 2016 if we can manage to limit the duration of the thermal vacuum cycles. Due to the large temperature range to be covered, each cycle could take a considerable time to complete. This is why we start on a Friday, so we can have a better estimation next week on how long the entire cycling process will take.




Sneak preview BiSon64-B

bison64-b-with-transport-containerThis is a sneak preview of the BiSon64-B and the associated transport package.

The sensor consists of a standards BiSon64 to which a small baffle is added to reduce the influence of albedo signals originating from outside the measurement field of view.

Adding less than 5 grams to the sensors the baffle allows to increase the accuracy of the sensors significantly if albedo signals or reflections from structural parts are present.

By putting four of these sensors on the anti-earth looking face of a satellite and tilting them by 45 degrees a so called multiple analogue digital or MAD configuration can be created which will provide a super-hemispherical field of view combined with albedo insensitivity. (for earth pointing satellites).

The lid of the transport package can double as a remove before flight protection cap at satellite level if desired. The transport container will be added as a separate product to the Lens R&D product portfolio. Since all Lens R&D space grade sunsensors currently have the same mounting interface, the same product can be used for multiple types of sensor. (BiSon64, BiSon64-B, BiSon64-ET and BiSon74-ET-RH)

JAXA’s vice president mr Yamaura visited Lens R&D

On 19th of October 2016 mr Yamaura and several other representatives of JAXA visited the facilities of Lens R&D in Noordwijk.

After a short introduction on Lens R&D provided by Stefan Schmidt they got to see our super continuum based sunsensor calibration setup as well as various types of sunsensors both qualified and under design.

JAXA's vice president mr Yamaura inspecting a BiSon64 sunsensor

JAXA’s vice president mr Yamaura inspecting a BiSon64 sunsensor